חAmibia university OF SCIEПCE AПD TECHПOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES
SCHOOL OF HEALTH AND APPLIED SCIENCES
DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE (MAJOR AND MINOR)	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: TPH601S	COURSE NAME: THERMAL PHYSICS
SESSION: JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION PAPER	
EXAMINER(S)	DR VAINO INDONGO
MODERATOR:	PROF SYLVANUS ONJEFU

INSTRUCTIONS

1. Write all your answers in the answer booklet provided.
2. Read the whole question before answering.
3. Begin each question on a new page.
4. The list of constants and useful formulae are on the last page of this paper.

PERMISSIBLE MATERIALS

1. Non-Programmable Scientific Calculator

THIS PAPER CONSISTS OF 5 PAGES
(INCLUDING THIS FRONT PAGE)

QUESTION 1

1.1 Briefly explain of the following thermodynamic terms:
(i) Environment
(ii) Universe
(iii) Isobaric process
(iv) Temperature
1.2 State the zeroth law of thermodynamics.
1.3 A male student in a physics class takes two cups of water at 303 K and mixes them with one cup of water at 278 K (each mass of water weighs 50 g). Set the equation $Q_{\text {total }}=0$ and calculate the likely temperature of the mixture? Show your work/steps.
1.4 A brass rod is 0.70 m long at $40^{\circ} \mathrm{C}$. Find the increase in length of this rod at $70^{\circ} \mathrm{C}$. (Hint: $\alpha=1.90 \times 10^{-5} /{ }^{\circ} \mathrm{C}$)

QUESTION 2

2.1 A steam in cylindrical glass of height $\mathrm{h}=100 \mathrm{~mm}$ covered with a piston of mass 3500 g and has a cross sectional area of $450 \mathrm{~cm}^{2}$. Determine the:
(i) pressure that is exerted by this piston on the gas in the chamber, as shown in

Figure 1. Assume gravitational acceleration ' g ' to be $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
(ii) work done when the same cylinder is heated afterwards at a constant pressure of 1 atm and its initial volume changes from V_{0} to $5 V_{0}$.

Fig. 1
2|Page
2.2 An amount of heat Q was added to a substance (ice block) of mass 500 g at a temperature of $-40^{\circ} \mathrm{C}$ and is converted to steam at a temperature of $140^{\circ} \mathrm{C}$ (Fig 2). The specific heats, c , of ice, water and steam are $2060 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}, 4180 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$ and $1870 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$, respectively. The latent heats of fusion and vaporizations are $336 \mathrm{~kJ} / \mathrm{kg}$ and $225 \mathrm{~kJ} / \mathrm{kg}$, respectively. Determine:
(a) heat energy required to turn ice into water.
(b) heat energy required to change the temperature of ice from $-40^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.
(c) total heat energy required to change the temperature of a substance between $0^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$.

Fig. 2

QUESTION 3

3.1 An ideal gas undergoes an isothermal (constant-temperature) compression at temperature T, with its volume changing from V_{1} to V_{2}.
(i) Prove that the work done during this process is given by an expression

$$
\begin{equation*}
W=n R T \ln \frac{P_{1}}{P_{2}} . \tag{6}
\end{equation*}
$$

(ii) Is the work done positive or negative? Give reasons.
3.2 A temperature of 120 moles of monoatomic ideal gas with a ratio $\gamma=1.600$ confined in a cylinder was increased from 273.15 K to 292.15 K at a uniform atmospheric pressure (1 atm). The cylinder was covered with a piston and the volume increases by $4.28 \times 10^{-2} \mathrm{~cm}^{3}$. Calculate the amount of heat transferred.
3.3 Use the relationships for specific heats, Cv and Cp as well as ideal gas constant R to prove that $T V^{\gamma-1}$ is constant under an adiabatic condition.

QUESTION 4

4.1 Define entropy and state the second law of thermodynamics.
4.2 A gasoline truck engine takes in 35 kJ of heat and delivers 13.5 kJ of mechanical work per cycle. The heat is obtained by burning gasoline with heat of combustion

$$
l_{c}=5 \times 10^{4} \mathrm{~J} / \mathrm{g} . \text { Calculate; }
$$

(a) the thermal efficiency of this engine?
(b) heat discarded per cycle
(c) If the engine goes through 8 cycles per second, what is its power output in kW and hp? Hint: $1 \mathrm{hp}=746 \mathrm{~W}$
(d) How much gasoline is burned in each cycle in kg ?
4.3 Suppose an engine absorbs 1000 J of heat at 383.15 K and expels 713 J at 273.15 K per cycle. Determine the total entropy of the system in one cycle.

QUESTION 5

5.1 Show that internal energy (U) is a thermodynamic potential which is a function of entropy and volume.
5.2 Derive the differential form of Gibb's free energy/function from $G=U+p V-T S$.

$$
4 \mid P a g e
$$

5.3 (i) The speeds of five molecules of a gas are $24 \mathrm{k}, 25 \mathrm{k}, 26 \mathrm{k}, 23 \mathrm{k}, 30 \mathrm{k}$ all in ms^{-1}, where k is equal to the number of molecules. Evaluate the rms speed.
(ii) Detemine average kinetic energy of a gas at a temperature $27^{\circ} \mathrm{C}$.

END

Useful equations and constants:

$$
\begin{aligned}
& <\text { K.E. }>=\frac{1}{2} \mathrm{mv}_{\text {rms }}^{2}=\frac{1}{2} \mathrm{~m} \frac{3 \mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~m}}=\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{~T} \\
& v_{\text {rms }}=\sqrt{\frac{3 P V}{N m}}=\sqrt{\frac{3 \mathrm{Nk}_{\mathrm{B}} T}{\mathrm{Nm}}}=\sqrt{\frac{3 \mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~m}}} \\
& \text { The ideal gas law } P V=N_{B} T \\
& \text { Boltzman's constant: } k_{B}=1.38 \times 10^{-23} \mathrm{JK}^{-1} \text {, } \\
& \text { Avogadro's number: } \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}
\end{aligned}
$$

Mean free path: $\lambda=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{T}}{\sqrt{2} \mathrm{~d}^{2} \mathrm{P}}$

$$
1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}
$$

Maxwell-Boltzmann Distribution: $f(V)=4 \pi\left[\frac{\mathrm{~m}}{2 \pi \mathrm{k}_{\mathrm{B}} \mathrm{T}}\right]^{\frac{3}{2}} \mathrm{v}^{2} e^{-\mathrm{mv} v^{2} / 2 \mathrm{k}_{\mathrm{B}} \mathrm{T}}$

